

KLINGERSIL® C-4430 - offers excellent stress relaxation.

Consisting of synthetic fibers bonded with NBR and offering excellent stress relaxation, this gasket material is used in hot water and higher-temperature steam applications. It is resistant to oils, gases, salt solutions, fuels, alcohols, moderate organic and inorganic acids, hydrocarbons, lubricants and refrigerants.

Optimum combination of synthetic fibers bonded with NBR.
White / Green
BAM-tested, DIN-DVGW, DIN-DVGW W 270, DVGW VP 401, Elastomer-Guideline, WRAS approval, TA-Luft (Cleanair), DNV GL approval Fire-Safe acc. b DIN EN ISO 10497, Fire-Safe acc. to ISO 19921, AS4020 Potable Water,

Sheet size	1000 x 1500 mm, 2000 x 1500 mm					
Thickness	0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, 3.0 mm					

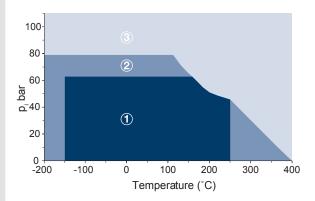
Tolerances

Thickness according to DIN 28091-1

Length: ± 50 mm Width: ± 50 mm

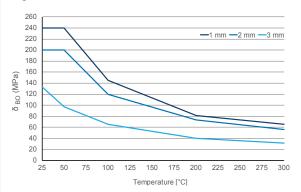
Industry

General industry / Chemical / Oil & Gas / Energy / Infrastructure / Pulp & Paper / Marine / Automotive / Food & Beverage


TECHNICAL DATA - Typical values for a thickness of 2.0 mm

Compressibility	ASTM F 36 J	%	9
Recovery	ASTM F 36 J	%	55
Stress relaxation DIN 52913	50 MPa, 16 h/175°C	MPa	39
	50 MPa, 16 h/300°C	MPa	35
Stress relaxation BS 7531	40 MPa, 16 h/300°C	MPa	31
KLINGER cold/hot compression	thickness decrease at 23°C	%	8
50 MPa	thickness decrease at 300°C	%	11
Tightness	DIN 28090-2	mg/(s x m)	0.05
Specific leakrate	VDI 2440	mbar x l/(s x m)	2.13E-05
Thickness increase after fluid	oil IRM 903: 5 h/150°C	%	3
immersion ASTM F 146	fuel B: 5 h/23°C	%	5
Density		g/cm ³	1.8
Average surface resistance	ρΟ	Ω	4.1x10E13
Average specific volume resistance	ρD	Ωcm	4.5x10E12
Average dielectric strength	Ed	kV/mm	21.3
Average power factor	50 Hz	tan δ	0.03
Average dielectric coefficient	50 Hz	εr	6.7
Thermal conductivity	λ	W/mK	0.38
Classification acc. to BS 7531:2006	Grade AX		
ASME-Code sealing factors		,	
for gasket thickness 2.0 mm	tightness class 0.1mg/s x m	MPa	y 20
			m 1.6

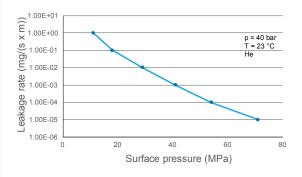
P-T diagram - thickness 2.0 mm



The area of the P-T diagram

- (1) In area one, the gasket material is normally suitable subject to chemical compatibility.
- 2 In area two, the gasket material may be suitable but a technical evaluation is recommended.
- (3) In area three, do not install the gasket without a technical evaluation.

Always refer to the chemical esistance of the gasket to the media.


Sigma BO

Maximum surface pressure in operating conditions of Sigma BO

This diagram shows the maximum surface pressure in MPa with which the sealing material may be loaded, depending on the operating temperature. The characteristic curves apply to the specified sealing thicknesses. In contrast to Qsmax according to EN 13555, the surface pressures specified here are based on a maximum permissible reduction in thickness.

Tightness performance

The tightness performance graph

The graph shows the required stress at assembling to seal a certain tightness class. The determination of the graph is based on EN13555 test procedure which applies 40bar Helium at room temperature. The sloping curve indicates the ability of the gasket to increase tightness with raising gasket stress.

Chemical resistance chart

Simplified overview of the chemical resistance depending on the most important groups of raw materials:

KLINGERSIL® C-4430					A: sma	all or no attack	B: weak	till moderate att	ack C:	C: strong attack	
Paraffinic hydrocarbon	Motor fuel	Aromates	Chlorinated hydrocarbon fluids	Motor oil	Mineral lubricants	Alcohol	Ketone	Ester	Water	Acid (diluted)	Base (diluted)
Α	В	С	С	Α	В	Α	С	С	Α	Α	Α

For more information on chemical resistance pleaseontact us

