
Vertical Flash Tanks (VAFT)

rong

Physical Data—Standard Design Model VAFT										
Model	AFT-6		AFT-8		AFT-12		AFT-16			
No.	in	mm	in	mm	in	mm	in	mm		
А	36	914	36	914	40	1,016	48	1,219		
В	21	533	21	533	23	584	26	660		
С	9-1/2	241	9-1/2	241	9-1/2	241	9-1/2	241		
D	51	1,295	52	1,321	55-3/8	1,407	63-1/2	1,613		
Е	36	914	36	914	40	1,016	48	1,219		
F	6	150	8	203	12	305	16	406		
G	2	50	3	80	4	102	6	150		
Н	2-1/2	65	4	102	6	150	6	150		
Ι	1-1/2	40	1-1/2	40	2	50	2	50		
J	3/4	20	1	25	1-1/2	40	2	50		
К	1/2	15	1/2	15	1/2	15	1/2	15		

NOTE: Connections "G" and "H" are 150 lb. flanges. All others are NPT. All flash tanksare ASME coded for 150 psig (10 bar). Special sizes available upon request.

Capacities—Standard Design Model VAFT									
Model	Maximum Con	densate Load	Maximum Flash Load						
No.	lb/hr	kg/hr	lb/hr	kg/hr					
AFT-6	2,000	907	500	227					
AFT-8	5,000	2,268	1,000	454					
AFT-12	10,000	4,536	2,000	907					
AFT-16	20,000	9,072	3,000	1,361					

Features

- ASME coded and stamped vessels
- Standard pressure rating 150 psi (other pressure ratings available upon request)
- Standard models are designed and sized to cover a wide range of applications and loads
- Flash vessels are designed to provide low velocity flash steam with no water carryover
- · Quick payback for flash recovery investment
- · Special tanks available upon request

For a fully detailed certified drawing, refer to CDF #1023.

Flash Steam Savings Analysis

Part I: Determining the amount of flash steam produced

A. Condensate Load	A =	_lb/hr.
B. Annual hours of operation	В =	_hrs/yr.
C. Steam Cost	C =	_\$/1,000 lbs.
D. Flash steam percentage from chart	D =	_ %
(on page 264)		
E. Flash steam produced:		
D x A = flash steam produced	E =	lb/hr.

Part II: Determining dollar value of the flash steam

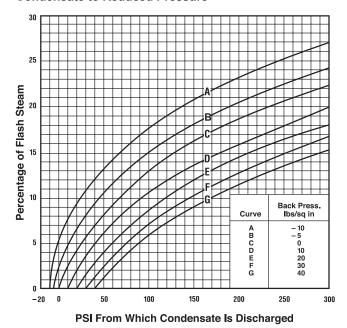
F. Annual flash steam savings:

 $\frac{\mathsf{F} = \mathsf{E} \times \mathsf{B} \times \mathsf{C}}{1,000}$

F = _____ \$/yr.

Flash Recovery Vessels

How much flash steam is available?


- 1. Follow horizontal axis right to primary discharge pressure.
- 2. Follow vertically up to secondary pressure curve.
- 3. Move left to "Percentage of flash steam."

Example:

Condensate load = 10,000 lb/hr Primary pressure = 100 psig Secondary pressure = 10 psig

Percentage of flash = 10.6% Secondary steam load = 1,060 lb/hr (10,000 lb/hr x .1060 = 1,060 lb/hr)

Selection: Model AFT-12 Percentage of Flash Steam Formed When Discharging Condensate to Reduced Pressure

Application Information

16,290 lb/hr at a (C - H) **15** psi differential. The steam trap shall be an Armstrong Model

2" 816 CV.

A. Condensate Load to Flash Tank 6,000 lb/hr Armstrong 3/4" GP-2000 B. Pressure of Incoming Condensate 100 psig **High Pressure** C. Flash Tank Pressure 20 psig Steam D. Flash Percentage 9.5% E. Flash Amount = A x (D/100) = 570 lb/hr F. Low Pressure Steam Required 2,500 lb/hr Low Pressure G. High Pressure Steam 200 psig Steam Vent H. Back Pressure 5 psig Flash tank will accommodate (A) 6,000 lb/hr of condensate at (B) 100 psig, resulting in (E) 570 lb/hr of flash steam at (C) 20 psig. The flash tank shall be Armstrong Model AFT-12. Armstrong The back pressure regulator shall pass (E) 1" GP-2000R 570 lb/hr of steam from (C) 20 psig to atmosphere. Armstrong The back pressure regulator shall be AFT-12 Safety Armstrong Model 1" GP-2000R. Relief Valve The pressure reducing valve shall pass (F) Armstrong Hiah Pressure Condensate C 2" 816 CV 2,500 lb/hr of steam from (G) 200 psig to (C) 20 psig. Pressure reducing valve shall be 3/4" GP-2000. The steam trap shall be an inverted bucket type with large vent and internal check valve. The steam trap will be sized using a 3:1 safety factor. The steam trap shall pass 3 x (A - E)